

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

ConsolePi

Acts as a serial Console Server, allowing you to remotely connect to ConsolePi via Telnet/SSH/bluetooth to gain Console Access to devices connected to local or remote ConsolePis via USB to serial adapters (i.e. Switches, Routers, Access Points… anything with a serial port).

Check out the NEW ConsolePi Clustering Feature!!

TL;DR:
Single Command Install Script. Run from a RaspberryPi running raspbian (that has internet access):

sudo wget -q https://raw.githubusercontent.com/Pack3tL0ss/ConsolePi/master/installer/install.sh -O /tmp/ConsolePi && sudo bash /tmp/ConsolePi && sudo rm -f /tmp/ConsolePi

Contents

	Features

	Serial Console Server

	AutoHotSpot

	Automatic VPN

	Automatic PushBullet Notifications

	Clustering / Cloud Sync

	Supported Cluster Methods

	Google Drive

	mDNS

	Manual

	How it works

	Important Notes

	API

	Installation

	Automated Installation

	Semi-Automatic Install

	Automated Flash Card Imaging/prep

	ConsolePi Usage

	Configuration

	Console Server

	TELNET

	SSH / BlueTooth (consolepi-menu)

	Convenience Commands

	Upgrading ConsolePi

	Tested Hardware

	ConsolePi @ Work! (Image Gallery)

	Credits

Features

Serial Console Server

This is the core feature of ConsolePi. Connect USB to serial adapters to ConsolePi, then access the devices on those adapters via the ConsolePi. Supports TELNET directly to the adapter, or connect to ConsolePi via SSH or BlueTooth and select the adapter from the menu. A menu is launched automatically when connecting via BlueTooth, use consolepi-menu to launch the menu from an SSH connection. The menu will show connection options for any locally connected adapters, as well as connections to any remote ConsolePis discovered via Cluster/sync.

AutoHotSpot

Script runs at boot (can be made to check on interval via Cron if desired). Looks for pre-defined SSIDs, if those SSIDs are not available then it automatically goes into hotspot mode and broadcasts its own SSID. In HotSpot mode user traffic is NAT’d to the wired interface if the wired interface is up.

When ConsolePi enters hotspot mode, it first determines if the wired port is up and has an IP. If the wired port is not connected, then the hotspot distributes DHCP, but does not provide a “Default Gateway” to clients. This allows a user to dual connect without having to remove a route to a gateway that can’t get anywhere. I commonly use a second USB WLAN adapter to connect to ConsolePi, while remaining connected to the internet via a different SSID on my primary adapter.

If a domain is provided to the wired port via DHCP, and the hotspot is enabled ConsolePi will distribute that same domain via DHCP to clients.

Automatic OpenVPN Tunnel

When an interface receives an IP address ConsolePi will Automatically connect to an OpenVPN server under the following conditions:

	It’s configured to use the OpenVPN feature, and the ConsolePi.ovpn file exists (an example is provided during install)

	ConsolePi is not on the users home network (determined by the ‘domain’ handed out by DHCP)

	The internet is reachable. (Checked by pinging a configurable common internet reachable destination)

Automatic PushBullet Notification

(Requires a PushBullet Account, API key, and the app / browser extension.)

When ConsolePi receives a dynamic IP address. A message is sent via PushBullet API with the IP so you know how to reach ConsolePi.

[image: _images/ConsolePiPB1.png]Push Bullet Notification image

An additional message is sent once a tunnel is established if the Automatic OpenVPN feature is enabled.

[image: _images/ConsolePiPB2.png]Push Bullet Notification image

Each Time a Notification is triggered all interface IPs are sent in the message along with the ConsolePi’s default gateway(s).

ConsolePi Cluster / Cloud Config

The Cluster feature allows you to have multiple ConsolePis connected to the network, or to each other (i.e. first ConsolePi in hotspot mode, the others connected as clients to that hotspot). A connection to any one of the ConsolePis in the Cluster will provide options to connect to any local serial adapters, as well as those connected to the other ConsolePis in the cluster (via the consolepi-menu command).

[image: _images/consolepi-use-diagram.jpg]consolepi-menu image

Another look at the menu
(No Power Relays defined in this one)

[image: _images/menu.png]consolepi-menu image

Supported Cluster Sync Methods:

Google Drive:

Read The Google Drive Setup for instructions on setting up Google Drive and authorizing ConsolePi to leverage the API.

	Google Drive/Google Sheets is currently the only external method supported. Given this gets the job done, it unlikely more external methods will be added.

	The ConsolePi will automatically exchange information with ConsolePi.csv in your gdrive under the following scenarios (all assume the function is enabled in the config):

	When the ConsolePi receives an IP address, and can reach the google API endpoints.

	When consolepi-menu is launched and the 'r' (refresh) option is selected.

In both of the above a local cloud cache is updated for the sake of persistence and speed. The local cloud cache is what is referenced when the menu is initially launched

mDNS

	ConsolePis now advertise themselves on the local network via mDNS (bonjour, avahi, …)

	2 daemons run on ConsolePi one that registers itself via mdns and updates anytime a change in available USB-serial adapters is detected, and a browser service which browses for remote ConsolePis registered on the network. The browser service updates the local cloud cache when a new ConsolePi is detected.

Local Cloud Cache

	local cloud cache: For both of the above methods, a local file /etc/ConsolePi/cloud.data is updated with details for remote ConsolePis. This cache file can be modified or created manually. If the file exists, the remote ConsolePis contained within are checked for reachability and added to the menu on launch.

DHCP based:

This function currently only logs as mDNS has made this unnecessary. It remains as future enhancements (auto detect oobm ports, ztp) will likely use this mechanism.

Triggered by ConsolePi Acting as DHCP server (generally hotspot):

Important Notes:

	The Gdrive function uses the hostname as a unique identifier. If all of your ConsolePis have the same hostname they will each overwrite the data. The Hostname is also used to identify the device in the menu.

Make Hostnames unique for each ConsolePi

	The consolepi-addconsole command now supports assingment of custom names to the aliases used to identify the serial adapters when using the predictable TELNET ports. (udev rules). If configured these names are used in consolepi-menu, the default device name is used if not (i.e. ttyUSB0), but that’s less predictable.

	The last ConsolePi to connect is the only one that will have menu-items for all the connected ConsolePis on the initial launch of consolepi-menu. Use the refresh option in consolepi-menu if connecting to one of the previous ConsolePis so it can fetch the data for ConsolePis that came online after it did.

	consolepi-menu does not attempt to connect to the cloud on launch, it retrieves remote data from the local cache file only, verifies the devices are reachable, and if so adds them to the menu. To trigger a cloud update use the refresh option. Note that ConsolePi will automatically update the local cache file when it gets an IP address, so the refresh should only be necessary if other ConsolePis have come online since the refresh.

	Read The Google Drive Setup for instructions on setting up Google Drive and authorizing ConsolePi to leverage the API.

If you are configuring multiple ConsolePis to use this cluster, you should consider using the Flash-Card imaging script. Once You’ve installed the first ConsolePi, leverage the Automated flash-card imaging script to pre-stage the micro-sd cards for the other ConsolePis you will be creating. This script is handy, if duplicating the install across multiple ConsolePis. It can pre-stage the entire configuration and cut out some install time.

ConsolePi API

With the development of the short-lived DHCP sync function an API was created to speed up updates. That API is now implemented and running… http (for now) port 5000 with the following URIs all start with /api/v1.0/ All current methods only support the GET method. If a need arises to actually use this for something Security and post capability may follow.

/api/v1.0/

	adapters: returns list of local adapters

	remcache: returns the local cloud cache

	ifaces: returns interface / IP details

	details: full json representing all local details for the ConsolePi

ConsolePi currently doesn’t use the API for any of it’s functionality. It may be leveraged in the future for verification (to ensure cloud sync entry is not stale), or for other purposes yet to be determined.

The API is currently unsecured, it uses http, and Auth is not implemented yet. It currently only supports GET requests, and doens’t return any sensitive data. As it’s not currently used, it’s OK to disable sudo systemctl disable consolepi-api. Just be aware that you may have to disable after each upgrade.

Installation

If you have a Linux system available you can use the Flash-Card imaging script to burn the image to a micro-sd, enable SSH, pre-configure a WLAN (optional), and PreConfigure ConsolePi settings (optional). This script is especially useful for doing headless installations.

The Following Applies to All Automated Installation methods

ConsolePi will optionally use pre-configured settings for the following if they are placed in the logged in users home-dir when the installer starts (i.e. /home/pi) or in a ‘ConsolePi_stage’ subdir (i.e. /home/pi/ConsolePi_stage). This is optional, the installer will prompt for the information if not pre-configured. It will prompt you to verify either way.

	ConsolePi.conf: This is the main configuration file where all ConsolePi.conf configurable settings are defined. If provided in the users home dir the installer will ask for verification then create the working config /etc/ConsolePi/ConsolePi.conf

	ConsolePi.ovpn: If using the automatic OpenVPN feature this file is placed in the appropriate directory during the install. Note: there are a few lines specific to ConsolePi functionality that should be at the end of the file, I haven’t automated the check/add for those lines so make sure they are there. Refer to the example file in the /etc/ConsolePi/src dir

	ovpn_credentials: Credentials file for OpenVPN. Will be placed in the appropriate OpenVPN dir during the install. This is a simple text file with the openvpn username on the first line and the password on the second line.

The script will chmod 600 everything in the /etc/openvpn/client directory for security so the files will only be accessible via sudo (root).

	10-ConsolePi.rules: udev rules file used to automatically map specific adapters to specific telnet ports. So every time you plug in that specific adapter it will be reachable on the same telnet port even if other adapters are also plugged in. Pre-Configuring this is only useful if you are doing a rebuild and already have a rules file defined, it allows you to skip the step in the install where the rules are created by plugging adapters in 1 at a time.

	wpa_supplicant.conf: If found during install this file will be copied to /etc/wpa_supplicant. The file is parsed to determine if any EAP-TLS SSIDs are configured, and if so the associated certificate files are also copied to the directory specified in the wpa_supplicant.conf file.

The script will look for certs in the following directories (using pi as an example will look in user home dir for any user):

	/home/pi

	/home/pi/cert

	/home/pi/ConsolePi_stage/cert

	ConsolePi_init.sh: Custom post install script. This custom script is triggered after all install steps are complete. It runs just before the post-install message is displayed.

To enable the Clustering / Cloud-Config function see the description above and the prerequisite Google Drive Setup instructions.

1. Automated Installation

Install raspbian on a raspberryPi and connect it to the network.

Use the command string below to kick-off the automated installer. The install script is designed to be essentially turn-key. It will prompt to change hostname, set timezone, and update the pi users password if you’re logged in as pi. Be sure to checkout the image creator script if doing a headless install, or if you are creating multiple ConsolePis

sudo wget -q https://raw.githubusercontent.com/Pack3tL0ss/ConsolePi/master/installer/install.sh -O /tmp/ConsolePi && sudo bash /tmp/ConsolePi && sudo rm -f /tmp/ConsolePi

2. Semi-Automatic Install

Alternatively you can clone this repository to /etc manually, then run the install script. The only real benefit here would be pre-configuring some of the parameters in the config file:

cd /etc
sudo git clone https://github.com/Pack3tL0ss/ConsolePi.git

Optionally Pre-Configure parameters, it will result in less time on data-collection/user-input during the install. Just grab the ConsolePi.conf.example file from the repo, edit it with your settings, and place it in the home dir (for the logged in user: i.e. /home/pi)

example assuming logged in as pi
cd ~/
sudo mv ConsolePi.conf.example ConsolePi.conf
sudo nano ConsolePi.conf

Configure parameters to your liking then
ctrl + o –> to save
ctrl + x –> to exit
Then run the installer

cd /etc/ConsolePi/installer
sudo ./install.sh

3. Automated Flash Card Imaging with Auto-Install on boot

Script has been tested and works with USB to micro-sd adapter and sd to micro-sd adapters.

This is a script I used during testing to expedite the process Use at your own risk it does flash a drive so it could do harm!

NOTE: USB adapters seemed to have more consistency than sd/micro-sd adapters, the latter would occasionally not mount until after the adapter was removed and re-inserted

Using a Linux System (Most distros should work … tested on Raspbian and Mint) enter the following command:
curl -JLO https://raw.githubusercontent.com/Pack3tL0ss/ConsolePi/master/installer/ConsolePi_image_creator.sh && sudo chmod +x ConsolePi_image_creator.sh

That will download the image creator and make it executable.
Then I would suggest head -48 ConsolePi_image_creator.sh, Which will print the top of the file where everything is explained in more detail.

ConsolePi_image_creator brief summary:

The “Stage dir” referenced below is a sub directory found in the script dir (the directory you run the script from). The script looks for the Stage dir which needs to be named ‘ConsolePi_stage’ and moves the entire directory to the pi users home directory.

The Pre-staging described below is optional, this script can be used without any pre-staging files, it will simply burn the Raspbian-lite image to the micro-sd and set the installer to run automatically on boot (unless you set auto_install to false in the script. It’s true by default).

**NOTE: The script will look for and pull down the most current Raspbian “lite” image, that’s the more bare-bones Raspbian image with no desktop environment. If you want to use if for one of the images that includes a desktop, that’s possible, but the script would need to be tweaked to support that. **

A Quick and dirty way to achieve this would be to add img_file="<name-of-image>" below the comment on line 190 of the script. Place the image in the same dir as the script. The script will still check for (and download if not found) the most current lite image, but the new line will effectively override all that and tell it to use the file you’ve specified

	automatically pull the most recent raspbian-lite image if one is not found in the script-dir (whatever dir you run it from)

	Make an attempt to determine the correct drive to be flashed, allow user to verify/confirm (given option to display fdisk -l output)

	Flash image to micro-sd card

	PreConfigure ConsolePi with parameters normally entered during the initial install. So you bypass data entry and just get a verification screen.

	The entire stage dir (ConsolePi_stage) is moved to the micro-sd if found in the script dir. This can be used to pre-stage a number of config files the installer will detect and use, along with anything else you’d like on the ConsolePi image.

	Pre-Configure a psk or open WLAN via parameters in script, and Enable SSH. Useful for headless installation, you just need to determine what IP address ConsolePi gets from DHCP.

	You can also pre-configure WLAN by placing a wpa_supplicant.conf file in the script dir (or stage dir). This method supports EAP-TLS with certificates. Just place the cert files referenced in the provided wpa_supplicant.conf file in a ‘cert’ folder inside the stage dir. (Only works for a single EAP-TLS SSID or rather a single set of certs).

	PreStage all OpenVPN related files (ConsolePi.ovpn and ovpn_credentials) by placing them on the ConsolePi image. The script will detect them if found in script dir or stage dir. The installer will then detect them and place them in the /etc/openvpn/client directory. By default the installer places example files in for OpenVPN (as the specifics depend on your server config).

	create a quick command ‘consolepi-install’ to simplify the long command string to pull the installer from this repo and launch.

	The ConsolePi installer will start on first login, as long as the RaspberryPi has internet access. This can be disabled by setting auto_install to false in this script.

Once Complete you place the newly blessed micro-sd in your raspberryPi and boot. The installer will automatically start unless you’ve disabled it. In which case the consolepi-install will launch the installer.

ConsolePi Usage

Configuration:

The Configuration file is validated and created during the install. Settings can be modified post-install via the configuration file /etc/ConsolePi.conf (Some Changes will require consolepi-upgrade to be ran to take effect)

Console Server:

TELNET

Don’t overlook consolepi-menu which supports remote ConsolePi discovery and provides a single launch point into any local and remote connections discovered

	Serial/Console adapters are reachable starting with telnet port 8001 +1 for each subsequent adapter plugged in (8002, 8003…). If you are using a multi-port pigtail adapter or have multiple adapters plugged in @ boot, then it’s a crap shoot which will be assigned to each telnet port. Hence the next step.

	The install script automates the mapping of specific adapters to specific ports. The defined predictable adapters start with 7001 +1 for each adapter you define. The reasoning behind this is so you can label the adapters and always know what port you would reach them on. Key if you are using a multi-port pig-tail adapter, or if multiple adapters are plugged in @ boot. This can also be accomplished after the install via the consolepi-addconsole command.

Note: Some cheap a@# serial console adapters don’t define serial #s, which is one of the attributes used to uniquely identify the adapter. If the script finds this to be the case it will let you know and create a log with an attribute walk for the adapter; /var/log/ConsolePi/consolepi-addudev.error*

Note: the 8000 range is always valid even if you are using an adapter specifically mapped to a port in the 7000 range. So if you plug in an adapter pre-mapped to port 7005, and it’s the only adapter plugged in, it would also be available on port 8001

	Port monitoring/and control is available on TELNET port 7000. This allows you to change the baud rate of the port on the fly without changing the config permanently. The installer configures all ports to 9600 8N1.

	Serial Port configuration options can be modified after the install in /etc/ser2net.conf

SSH / BlueTooth

The consolepi-menu command can be used to display a menu providing options for any locally connected USB to Serial adapters. In addition to any remotely connected USB to serial adapters connected to other ConsolePis if using the Clustering/cloud-config feature. When connecting to ConsolePi via bluetooth this menu launches automatically.

Note that when using bluetooth the menu is limited to local adapters and remotes found in the local-cache file. Connect via SSH for full remote functionality in the menu.

Convenience Commands:

There are a few convenience commands created for ConsolePi during the automated install

	consolepi-menu: Launches ConsolePi Console Menu, which will have menu items for any serial adapters that are plugged in. This allows you to connect to those serial adapters. This menu is launched automatically when connecting to ConsolePi via BlueTooth, but can also be invoked from any shell session (i.e. SSH)

	consolepi-upgrade: Upgrades ConsolePi: More useful in the future. Currently bypasses upgrade of ser2net (it’s compiled from source). I’ll eventually remove the bypass. For now this is essentially the same as doing a ‘sudo git pull’ from /etc/ConsolePi and updating/upgrading the other packages via apt. Note: in it’s current form it may overwrite some custom changes. It’s only lightly been tested as an upgrade script.

	consolepi-showremotes: Displays the formatted contents of the local cloud cache. This command accepts 1 optional case sensitive argument: Hostname of the remote ConsolePi. If a hostname is provided only data for that host will be displayed (if it exists in the local cache, if it doesn’t exist the entire cache is dispayed).

	consolepi-addssids: runs the /etc/ConsolePi/installer/ssids.sh script. This script automates the creation of additional SSIDs which ConsolePi will attempt to connect to on boot. Currently only supports psk and open SSIDs, but may eventually be improved to automate creation of other SSID types.

	consolepi-addconsole: runs the /etc/ConsolePi/installer/udev.sh This script automates the process of detecting USB to serial adapters and mapping them to specific telnet ports. It does this by collecting the data required to create a udev rule. It then creates the udev rule starting with the next available port (if rules already exist).

	consolepi-autohotspot: runs /usr/bin/autohotspotN script This script re-runs the autohotspot script which runs at boot (or periodically via cron although the installer currently doesn’t configure that). If the wlan adapter is already connected to an SSID it doesn’t do anything. If it’s acting as a hotspot or not connected, it will scan for known SSIDs and attempt to connect, then fallback to a hotspot if it’s unable to find/connect to a known SSID.

	consolepi-testhotspot: Toggles (Disables/Enables) the SSIDs ConsolePi is configured to connect to as a client before falling back to hotspot mode. This is done to aid in testing hotspot mode. After toggling the SSIDs run consolepi-autohotspot to trigger a change in state.

	consolepi-pbtest: Used to test PushBullet this commands simulates an IP address change by calling the script responsible for sending the PB messages and passing in a random IP to force a notification.

	consolepi-browse: Runs the mdns browser script which runs as a daemon in the background by default. When ran via this command it will display any ConsolePis discovered on the network along with the data being advertised by that remote ConsolePi.

	consolepi-killvpn: gracefully terminates the OpenVPN tunnel if established.

	consolepi-bton: Make ConsolePi Discoverable via BlueTooth (Default Behavior on boot)

	consolepi-btoff: Stop advertising via BlueTooth. Previously paired devices will still be able to Pair.

Upgrading ConsolePi

Use consolepi-upgrade to upgrade ConsolePi. Simply doing a git pull may occasionally work, but there are a lot of system files, etc. outside of the ConsolePi folder that are occasionally updated, those changes are made via the upgrade script.

Note manual changes to some system files may be overwritten during upgrade. If that occurs, the original modified file is stashed in the ConsolePi/bak directory.

Tested Hardware

ConsolePi Should work on all variants of the RaspberryPi, but it has been tested on the following:

​	If you find a variant of the Rpi that does not work, create an “issue” to let me know. If I have one I’ll test when I have time to do so

	RaspberryPi 4 Model B

	Tested with RaspberryPi Power supply, PoE Hat, and booster-pack (battery)

	RaspberryPi 3 Model B+

	Tested with RaspberryPi Power supply, PoE Hat, and booster-pack (battery)

	RaspberryPi zero w

	With both single port micro-usb otg USB adapter and multi-port otg usb-hub. Use this with battery pack on a regular basis.

I did notice with some serial adapters the RaspberryPi zero w Would reboot when the adapter was plugged in, this is with a RaspberryPi power-supply. They work fine, it just caused it to reboot when initially plugged-in.

ConsolePi @ Work!

Have some good pics of ConsolePi in action? Let me know.

[image: _images/ConsolePi.jpg]ConsolePi in action
[image: _images/ConsolePi0.jpg]ConsolePi in action

CREDITS

ConsolePi utilizes a couple of other projects so Some Credit

	AutoHotSpotN (roboberry [http://www.raspberryconnect.com/network/itemlist/user/269-graeme])

Network Wifi & Hotspot with Internet
A script to switch between a wifi network and an Internet routed Hotspot
A Raspberry Pi with a network port required for Internet in hotspot mode.
Works at startup or with a seperate timer or manually without a reboot
Other setup required find out more at
http://www.raspberryconnect.com

ConsolePi Provides the source script for AutoHotSpotN as there are minor modifications to the script for some ConsolePi functionality

	ser2net (cminyard [http://sourceforge.net/users/cminyard])

This project provides a proxy that allows telnet/tcp connections to be made to serial ports on a machine.

https://sourceforge.net/projects/ser2net/

https://github.com/cminyard/ser2net

The ser2net available from apt works and has been tested, the installation script pulls the far more current version from sourceforge and compiles/installs it and builds the config

ConsolePi - Manual Installation

INCOMPLETE INSTRUCTIONS FOR NOW This is a WIP

ser2net: The installer above builds from source so you would have the newest version of ser2net available.

You can install from source which is: https://sourceforge.net/projects/ser2net/files/latest/download

however unless you need features in the newer release the simpler method is to just install from apt. (otherwise I’m too lazy to explain it all here, if you want the most current use the installer)

sudo apt-get install ser2net

edit /etc/ser2net.conf

The file should look something like this (below all the comments):

BANNER:banner:\r\nConsolePi port \p device \d [\s] (Debian GNU/Linux)\r\n\r\n

TRACEFILE:usb0:/var/log/consolePi/ser2net/usb0:\p-\M-\D-\Y_\H:\i:\s.\U
TRACEFILE:usb1:/var/log/consolePi/ser2net/usb1:\p-\M-\D-\Y_\H:\i:\s.\U
TRACEFILE:usb2:/var/log/consolePi/ser2net/usb2:\p-\M-\D-\Y_\H:\i:\s.\U
TRACEFILE:usb3:/var/log/consolePi/ser2net/usb3:\p-\M-\D-\Y_\H:\i:\s.\U
TRACEFILE:usb4:/var/log/consolePi/ser2net/usb4:\p-\M-\D-\Y_\H:\i:\s.\U

Known Devices - tied to udev rules symlinks
7001:telnet:0:/dev/sissyblue1:9600 8DATABITS NONE 1STOPBIT banner
7002:telnet:0:/dev/sissyblue2:9600 8DATABITS NONE 1STOPBIT banner
7003:telnet:0:/dev/white_blue:9600 8DATABITS NONE 1STOPBIT banner
7004:telnet:0:/dev/arubaorg1:9600 8DATABITS NONE 1STOPBIT banner
7005:telnet:0:/dev/old:9600 8DATABITS NONE 1STOPBIT banner

unknown devices (known devices will also use these ports first come first serve in order)
8001:telnet:0:/dev/ttyUSB0:9600 8DATABITS NONE 1STOPBIT banner
8002:telnet:0:/dev/ttyUSB1:9600 8DATABITS NONE 1STOPBIT banner
8003:telnet:0:/dev/ttyUSB2:9600 8DATABITS NONE 1STOPBIT banner
8004:telnet:0:/dev/ttyUSB3:9600 8DATABITS NONE 1STOPBIT banner
8005:telnet:0:/dev/ttyUSB4:9600 8DATABITS NONE 1STOPBIT banner

Optionally setup udev rules for Predictable Ports. This way when you plug in a specific serial adapter you always know what port will be assigned to it (label them):

The Easiest Way to do this manually is to tail the syslog, then plug in the serial adapters 1 at a time taking note of some information as it comes in (log the session)

tail -f /var/log/messages | grep usb

The syslog will look like this

May 2 10:23:42 consolepi kernel: [145144.257115] usb 1-1.2: new full-speed USB device number 9 using dwc_otg
May 2 10:23:42 consolepi kernel: [145144.410521] usb 1-1.2: New USB device found, idVendor=0403, idProduct=6001
May 2 10:23:42 consolepi kernel: [145144.410535] usb 1-1.2: New USB device strings: Mfr=1, Product=2, SerialNumber=3
May 2 10:23:42 consolepi kernel: [145144.410543] usb 1-1.2: Product: US232R
May 2 10:23:42 consolepi kernel: [145144.410552] usb 1-1.2: Manufacturer: FTDI
May 2 10:23:42 consolepi kernel: [145144.410560] usb 1-1.2: SerialNumber: FTD991J5
May 2 10:23:42 consolepi kernel: [145144.414490] ftdi_sio 1-1.2:1.0: FTDI USB Serial Device converter detected
May 2 10:23:42 consolepi kernel: [145144.414641] usb 1-1.2: Detected FT232RL
May 2 10:23:42 consolepi kernel: [145144.415477] usb 1-1.2: FTDI USB Serial Device converter now attached to ttyUSB0
May 2 10:23:42 consolepi mtp-probe: checking bus 1, device 9: “/sys/devices/platform/soc/3f980000.usb/usb1/1-1/1-1.2”
May 2 10:23:42 consolepi mtp-probe: bus: 1, device: 9 was not an MTP device

You can also use lsusb to get the details. The udev.sh script provided with ConsolePi and ran as part of the installation automates this process.

Once You’ve gathered the details. Create the udev rules file

sudo nano /etc/udev/rules.d/10-consolePi.rules

with content similar to this:

SUBSYSTEM=="tty", ATTRS{idVendor}=="0403", ATTRS{idProduct}=="6001", ATTRS{serial}=="FTD991J5", SYMLINK+="white_blue"
SUBSYSTEM=="tty", ATTRS{idVendor}=="0403", ATTRS{idProduct}=="6001", ATTRS{serial}=="AL991JO9", SYMLINK+="sissyblue1"
SUBSYSTEM=="tty", ATTRS{idVendor}=="0403", ATTRS{idProduct}=="6001", ATTRS{serial}=="AL01JY6T", SYMLINK+="sissyblue2"
SUBSYSTEM=="tty", ATTRS{idVendor}=="0403", ATTRS{idProduct}=="6015", ATTRS{serial}=="DO009KB9", SYMLINK+="arubaorg1"
SUBSYSTEM=="tty", ATTRS{idVendor}=="050d", ATTRS{idProduct}=="0109", ATTRS{serial}=="051447", SYMLINK+="old"

idVendor, idProduct and serial comes from what we collected as the serial adapters were plugged in.

It is the “SYMLINK” value that ties these rules to the port definition in ser2net.conf. These rules create an alias for the specific device which is what we use to map the port.

If you only have 1 serial adapter, or only plan to use 1 at a time, none of this is necessary.

AutoHotSpotN

With this script ConsolePi will first look for configured SSIDs to connect to, if none are available it will fall-back to hotspot mode. This way you can take your ConsolePi anywhere and connect to it via WiFi.

Custom modifications for this project give the script an extra function, which is it looks to see if the wired interface is up when it enables the hotspot. If it is it enables dhcp (dnsmasq) to distribute a default-gateway to clients (ConsolePis WLAN/hotspot interface). If the wired interface is not up it does not distribute a default-gateway. This allows you to connect with a dual-nic system without having your routes messed up by the addition of a route with no access.

To Configure AutoHotSpotN manually follow the instructions here:

http://www.raspberryconnect.com/network/item/330-raspberry-pi-auto-wifi-hotspot-switch-internet

Then modify the file as follows:

Toward the top below the block of comments add

[[-f "/etc/ConsolePi/ConsolePi.conf"]] && . "/etc/ConsolePi/ConsolePi.conf" || wlan_ip=10.99.99.1

This checks to make sure ConsolePi.conf is there then reads it in. That will give the script the wlan_ip variable used elsewhere in the config. If it’s not it falls back to 10.99.99.1 which is only useful if the other files match.

Modify the CreateAdHocNetwork function to look as follows:

createAdHocNetwork()
{
 echo "Creating Hotspot"
 ip link set dev "$wifidev" down
 ip a add ${wlan_ip}/24 brd + dev "$wifidev"
 ip link set dev "$wifidev" up
 debug=`ip addr show dev wlan0 | grep 'inet '| cut -d: -f2 |cut -d/ -f1| awk '{ print $2}'`
 logger -t autohotspot $wifidev is up with ip: $debug
 dhcpcd -k "$wifidev" >/dev/null 2>&1
 iptables -t nat -A POSTROUTING -o "$ethdev" -j MASQUERADE
 iptables -A FORWARD -i "$ethdev" -o "$wifidev" -m state --state RELATED,ESTABLISHED -j ACCEPT
 iptables -A FORWARD -i "$wifidev" -o "$ethdev" -j ACCEPT
 ChkWiredState
 systemctl start dnsmasq
 systemctl start hostapd
 echo 1 > /proc/sys/net/ipv4/ip_forward
}

insert the following function after the closing } for the ChkWifiUp function

ChkWiredState()
{
	eth0_ip=`ip addr show dev eth0 | grep 'inet '| cut -d: -f2 |cut -d/ -f1| awk '{ print $2}'`
	eth0_state=`ip addr show dev eth0 | head -1 | sed -n -e 's/^.*state //p' | cut -d ' ' -f1 |awk '{ print $1 }'`
	if [${eth0_state} == "UP"] && [${#eth0_ip} -gt 6]; then
	 eth0_up=true
	else
	 eth0_up=false
	fi

	# sudo cp /etc/dnsmasq.conf /etc/dnsmasq.conf.orig
	if [$eth0_up = false]; then
		cp /etc/ConsolePi/dnsmasq.conf.noGW /etc/dnsmasq.conf
		logger -t autohotspot Bringing up hotspot with no gateway due to no eth0 connection
		echo Bringing up hotspot with no gateway due to no eth0 connection
	else
		cp /etc/ConsolePi/dnsmasq.conf.withGW /etc/dnsmasq.conf
		logger -t autohotspot Bringing up hotspot with gateway as eth0 is up with IP $eth0_ip
		echo Bringing up hotspot with gateway as eth0 is up with IP $eth0_ip
	fi
}

future: Change from swapping files to using SED to comment/uncomment gateway line in /etc/dnsmasq.conf <– this is a note to self. Disregard if it makes no sense.

Update… This change has been made, see AutoHotspotN script in src directory of repo.

Google Drive | Google Sheets Setup for ConsolePi cloud/clustering feature

Create Project

	Go To https://console.developers.google.com/ login to your google account if not already

	Create a new Project and name it “ConsolePi”

[image: ../_images/gdrive1.png]gdrive1

[image: ../_images/gdrive2.png]gdrive1

	Name the new project ConsolePi

	Click “+ ENABLE API AND SERVICES” at the top of the ConsolePi dashboard and add the following:

	Google Sheets API

	Google Drive API

	Select “Credentials” from the left menu and “Create Credentials”

	Select credential type: “OAuth Client ID”

	Application Type: Other

	Name the client “ConsolePi” (actually don’t think this one matters)

You’ll get a window with a Client ID and Client secret. You can close that window. Then on the credentials page you’ll have the option to download the json file used by ConsolePi

[image: ../_images/gdrive3.png]gdrive3

Rename the resulting file credentials.json

Authorize ConsolePi

Before ConsolePi can leverage the Google APIs to update the spreadsheet, we will need to Authorize the script.

	First place the credentials.json file retrieved from the developers console in /etc/ConsolePi/cloud/gdrive/.credentials directory.

Notice the dot prepending the credentials directory, it won’t show up in directory listings unless you do an ls -a, and won’t appear in the GUI file browser unless the option to display hidden files and folders is enabled.

If you have installed Raspbian with a full desktop:

	Login to a desktop (GUI) session on Raspbian and open a terminal window.

	issue the consolepi-menu command. Then select the option to refresh cloud data. This will start the script, which needs authorization the first time it is ran (on each ConsolePi)

	A browser should open prompting you to login and authorize the permissions being requested by the app.

	You should end up with 2 files in the /etc/ConsolePi/cloud/gdrive/.credentials directory.

​	.credentials.json

​	token.pickle

Those 2 files can be copied to any other ConsolePis you want to be part of your cluster. So you won’t have to go through the Authorization process on subsequent ConsolePis.

If you have installed Raspbian-lite (no desktop environment):

For ConsolePis using Raspbian-lite there is no desktop environment, so you can’t authorize the app to use the API. The script will present a link, but that link needs be used on the actual ConsolePi not a separate system.

To get around this I’ve provided a Windows compatible exe (created and tested on Win 10) that includes the get_credentials function from the gdrive.py script. This was bundled for Windows using pyinstaller so no other software is required to run it.

	download the exe from: https://github.com/Pack3tL0ss/ConsolePi/tree/Clustering/cloud/gdrive/headless-auth

The file is the gdrive-ConsolePi-headless-auth-win.exe Right Click and “save link as” or similar

	Place the credentials.json file in the same directory as the executable on a Windows system and double click the gdrive-ConsolePi-headless-auth-win.exe

	This should cause a browser to launch and present the Authorization flow.

Once Complete you should have a new token.pickle file in the same directory.

	Move both files credentials.json and token.pickle to the /etc/ConsolePi/cloud/gdrive/.credentials folder on the ConsolePi

Notice the dot prepending the credentials directory, it won’t show up in directory listings unless you do an ls -a, and won’t appear in the GUI file browser unless the option to display hidden files and folders is enabled.

	Login to the ConsolePi and issue the consolepi-menu command. Then press the option to update the cloud config.

Verification

	Login to your Google Drive account and look for ConsolePi.csv in the root folder. It will be created automatically by the first ConsolePi, and rows should exist for any ConsolePis that are connected.

	Logs are sent to /var/log/ConsolePi/cloud.log

	You should have entries for any ConsolePis that have used the menu to update.

Note: An update will also occur automatically anytime the ConsolePi get’s an IP address and can reach the internet

The Hostname is the unique identifier for the ConsolePi. So they should be unique. This was done on purpose. I could have used the MAC, but that would be less meaningful in the menu. In the menu the connections are identified by the hostname and port alias (if aliases were configured). It’s crucial to set unique hostnames, otherwise they will overwrite each others row in the spreadsheet and this feature won’t work.

 _static/ajax-loader.gif

_images/gdrive3.png
e}

_images/menu.png
- consolepi serial Menu -

[LOCAL] Connect to Local Adapters

1. Connect to ArubaMCl-
b Commeck &9 Ardbadsio i1-id2
3. Connect to Aruba8325-leafl
. Comnect to Aruba§325-leaf?

[Remote] Consolepi0 @ 10.0.10.206

5. Connect to Cisco2960s-Lab
6. Connect to Aruba8325-spinel

[Remote] BarnPi @ 10.1.30.28

7. Connect to 2930F-BARN_7002
8. Connect to AP303P-BARN_7001

c. change serial settings [9500 81 Flow-No

h. Display picocom hel

. Diseri bute SeH Kkey to Remote Hosts

", Refresh (Find new adapters on Local and Remote Consolepis)
. exit

* Remote Adapters based on local cahce only use refresh option to update *

]

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_images/consolepi-use-diagram.jpg
<
. Mo
ConsolePil D/:C
OVG/),
>

ConsolePi2

serverl

Remote Site
Wired Connecson w] outis <R
8 firl-idfl-swl
ConselePi3 PE—
o N
~r firL-idfl-sw2
P ®)
i ¥
B
fir2-idf1-sw1
ConsolePi4
Network Connections (Wired or WLAN) LEGEND

Gdrive Updates (push / pull device info)

OpenVPN Tunnel

Serial Connections

AC Power (Relay Controlled by ConsolePi)

_images/gdrive1.png
Google My First Project (3)

_images/ConsolePiPB1.png
ConsolePi 192.168.25.6

ConsolePi IP Update
eth0: 192.168.25.6
GW: 192.168.25.1

_images/ConsolePiPB2.png
ConsolePi VPN Established: 10.0.150.3

VPN Connection success on tun0
eth0: 192.168.25.6
wian0:10.3.0.1

tun0: 10.0.150.3

GW: 192.168.25.1

_images/gdrive2.png
Select a project

o prfcts s s
(al

NEW PROJECT

RECENT ALL
Name

My First Project @

D

sublime-elixir-229807

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_images/ConsolePi.jpg

_images/ConsolePi0.jpg

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

